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I SUMMARY 

An ana lys i s  of t he  e f f e c t s  of nonequilibrium ioniza t ion  and 

non-grey r ad ia t ion  i n  hypersonic shock l ayers  is  formulated. Two 

e s s e n t i a l l y  d i s t i n c t  models a re  used: (1) A Ferrar i -Clarke Model 

f o r  photoionization i n  an e f f ec t ive ly  "grey" gas and (2) A non-grey 

s t e p  funct ion model f o r  rad ia t ive  nonequilibrium. 

associated with the  numerical so lu t ion  of the  r e s u l t i n g  two-point 

boundary-value problems a r e  discussed. 

Some d i f f i c u l t i e s  

i 



I. INTRODUCTION 

The problem of inv isc id  rad ia t ing  flows over b lunt  bodies has 

been t h e  subjec t  of numerous s tudies  i n  recent years. lw7 Gross 

f e a t u r e s  o f - t h e  phenomena a r e  understood a t  present ,  although r e s u l t s  

obtained t h i s  f a r  are l imited by assumptions of l o c a l  thermodynamic 

equi l ibr ium (LTE), "grey" absorption c o e f f i c i e n t s ,  and r ad ia t ive ly  

inert  gas i n  f ron t  of the  shock. A more realist ic approach f o r  a i r ,  

the gas of engineering i n t e r e s t ,  i s  q u i t e  cumbersome owing t o  

numerous chemical species  and react ions en ter ing  i n t o  the  ionizat ion 

k i n e t i c s  and t h e  f a c t  t h a t  l i n e  r ad ia t ion  i n  a i r  is  not simply 

r e l a t e d  t o  e l ec t ron  production ra tes .  Therefore, the  present approach 

treats a model (monatomic) gas where the  r e l a t ionsh ip  between chemical 

and r a d i a t i v e  nonequilibrium is  reasonably w e l l  understood. 

The r epor t  e s s e n t i a l l y  cons is t s  of two parts (Sections I1 and 111), 

wi th  emphasis on d i f f e r e n t  aspects  of t he  problem. 

cerned with the  a 

ion iza t ion ;  these  e f f e c t s  have an important influence on the  flow 

observables assoc ia ted  with vehicles  i n  hypersonic f l i g h t  a t  high 

a l t i t u d e s .  The problem is formulated f o r  a monatomic gas obeying 

Section I1 is con- 

f nonequilibrium rad ia t ive  and c o l l i s i o n a l  -_ \ z 

- - - \ n 

\ 
t h e  r a d i a t i v e  model of Clarke and Fer rar i8 ;  i n  t h i s  context a one- 

dimensional mode1 of t he  shock layer around a blunt  body is  

invest igated.  

work of Chien 

\ 
The analytic statement represents  an ex ten t ion  of t he  

f o r  t h e  case of a grey gas i n  local thermodynamic 9 

equ i 1 i b r  ium. 
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Secti.cn 1 x 1  is cmcerned with the effects of aetiial (iisii-grey) - 
r a d i a t i v e  proper t ies  of high temperature gases  on the  heat  t r a n s f e r  

51-- -- --\ .... 

near the stagrEltier! pcint CE 2 b?unt body. This class ef e2fects is 
---------I___ <- 
I 

important f o r  hypervelocity f l i g h t  a t  a l t i t u d e s  lower than those 

considered i n  Section 11, namely a t  a l t i t u d e s  where the  absorpt ion 

of r ad ia t ion  i n  the  shock layer dominates  the  flow dynamics while 

t h e  ion iza t ion  has  only moderate inf luence thereon. 

absorp t ion  coe f f i c i en t  data for a i r  i n  the  temperature range between 

Inspection of 

10,000 and 15,000 K i nd ica t e s  t ha t  the  a c t u a l  coe f f i c i en t  may be 

approxinrated by s t e p  functions!' Accordingly, the  d i f f e r e n t i a l  

(moment) approximation of r a d i a t i v e  t r a n s f e r  is extended t o  11-13 

t h e  case of non-grey gas with stepwise approximation i n  the  frequency 

dependence. The approximate r ad ia t ive  t ranspor t  equations a r e  appl ied 

t o  t h e  study of s tagnat ion point flows, extending the  

Cheng and Vincenti fo r  a grey gas. It is emphasized 

t i o n  here  d i f f e r s  from t h a t  of Section I1 i n  t h a t  the  

7 

treatment by 

t h a t  the  motiva- 

gas is considered 

thermally and c a l o r i c a l l y  perfect and nonreacting; however, r ad ia t ive  

t r anspor t  and r ad ia t ive  heat  f lux are included i n  t h e  formulation of the  

energy equation. 

I n  view of the  common n a t u r e  of t h e  two problems and of similar 

numerical d i f f i c u l t i e s  associated therewith,  a j o i n t  discussion and 

presenta t ion  is  given i n  t h i s  report .  
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11. INVISCID RADIATING SHOCK IAYERS WITH NONEQUILIBIRUM 
RADIATIVE AND COLLISIONAL IONIZATION 

It i s  wel l  known t h a t  under condi t ions of low dens i ty  and high 

L L e : l u p c : L a C u L c ,  -----.. pre~ailing i~ the f l , ~ %  field bphirrrl strong Shocks 

generated by hypersonic vehicles  a t  high a l t i t u d e ,  t he  degree of t h e  

ion iza t ion  lags  considerably behind t h e  equilibrium values. 

some recent  papers 8s14 have considered nonequilibrium e f f e c t s  on shock 

wave s t r u c t u r e ,  t he  r e l a t ed  problem of r ad ia t ing  shock layers  with 

nonequilibrium rad ia t ive  and c o l l i s i o n a l  ion iza t ion  has not been 

t r e a t e d  ana ly t i ca l ly .  

Although 

The governing equations for  a gas with nonequilibrium rad ia t ive  

8 and c o l l i s i o n a l  ion iza t ion  a r e  very complex. I n  the following, we 

8 s h a l l  adopt the  s impl i f ied  model considered by Clarke and Fer rar i .  

Also, following Yoshikawa and Chapman , and Chien , we represent  the  

shock layers  by the  inv i sc id  flow through a normal shock wave i n t o  a 

cold,  black,  and porous planar w a l l .  Such an ana lys i s  provides a 

q u a l i t a t i v e  p i c tu re  of t he  flow f i e l d  and of the  nonequilibrium 

r a d i a t i o n  f i e l d  near the  s tagnat ion s t reamline of a blunt  body. 

I n  the  absence of thermal conduct ivi ty  and v i scos i ty ,  t he  

1 9 

equations of cont inui ty ,  momentum, energy, and state f o r  the  one- 

dimensional, steady flow of a monatomic gas a r e  
8 

pu =I’ 

2 + pu = r c l  
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and 

P = aRT(l+a) (2 .4 )  

where p i s  the  dens i ty ,  u t he  ve loc i ty ,  p the  pressure,  T the 

temperature, R t he  gas constant ,  the  r a d i a t i v e  heat  f lux ,  and a 
'j n- 

1 , n and n the  number t h e  degree of ion iza t ion  defined by a = - A n fnA i 
1 

d e n s i t i e s  of ions and atoms, respect ively.  I', 

of in t eg ra t ion  wi th  subscr ip t  1 denoting condi t ion a t  upstream i n f i n i t y .  

T .  is the  ion iza t ion  temperature def ined by the  r e l a t i o n  E 

is  the  Boltzmann constant ,  and E .  t he  energy required t o  rewove an 

outmost e l ec t ron  from an atom is i n  the  ground state. 

and W a r e  the  cons tan ts  
c1 1 

= kT. where k 
J j J 

J 

I f  t he  w a l l  i s  maintained a t  zero temperature and the  stand-off 

d i s t ance  is  4, t h e  r a d i a t i v e  heat f l u x  is  given by 

where %()q-q'l) = exp[- v l d m  i s  t h e  integro-exponential  
0 

funct ion,  q and are t h e  o p t i c a l  thickness  defined by 

8 x i s  the  absorp t ion  coe f f i c i en t  a t  t h e  frequency,,. per u n i t  mass of atom J 

4 



and S is  t h e  source function 

I n  (2.54 t h e  s s t e r i s k  denotes the equi l ibr ium degree of i on iza t ion  

given by the  Saha equation 

ock2 - = - -  * P no 1-a 

The r a t e  equation, as given by Clarke and F e r r a r i  8 , is 

(2.5e) 

where T~ is  t h e  l o c a l  c h a r a c t e r i s t i c  t i m e  of t h e  c o l l i s i o n a l  

ion iza t ion .  

Eqs.(2.1-2,6) represent a determined set of i n t e g r o - d i f f e r e n t i a l  

I f  t he  d i f f e r e n t i a l  equat ion f o r  

approximat ion  

s i x  unknowns p, p ,  T, q, and a. 
11-13 

is  employed, eq. (2.5d) can be replaced by 

and 

where Io is t h e  average r ad ia t ive  in t ens i ty .  

5 



These appraximate radiat ion-transport  equations together  with 

t h e  remaining equations then  cons t i t u t e  a determined set of purely 

d i f f e r e n t i a l  equations. 

For the  purpose of so lu t ion  it is convenient t o  r e c a s t  t h e  

noted system of equations i n  terms of new depenedent and independent 

va r i ab le s ;  i n  t h i s  way t h e  problem can be  reduced t o  t h e  in t eg ra t ion  

of two simultaneous equations of t h e  f i r s t  order,  

introduce a dimensionless veloci ty  v such t h a t  

Thus, w e  f i r s t  

U v = -  
=1 

From Eqs. (2.1) and (2.2), it is immediately apparent t h a t  c1 = 

t h e  s ta teLequat ion  (2.4) i n  terms of v becomes 

Subs t i t u t ion  of Eqs. (2.9) and (2.10) i n t o  energy equation (2.3) 

l eads  t o  

aRT 
where 2 . Following Heaslet and Ba1dwinl5, w e  then introduce 

t n e  va r i ab le  

2Cl 

r 

(2 .9)  

(2.10) 

(2.11) 

so t h a t  

5 2 
0 = (5 - v) 

6 
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v(q) = g - (ssn q) [my 
and the energy equation (2.11) takes the form 

~~ 

(2.13) 

0 - e, = z +  q, 

where 

q1 
zClr 

and q is the dimensionless radiative heat flux defined by q 2 . 
It is apparent from Eq.(2.14) that 9, is the value of 0 in the 

limit condition 2 =I q 

consequently 8, 5 0.1406. 

= 0. When %d a, 8- r z  = 0.1406; 
j 

The process of recasting the governing equations is continued by 

introducing the dimensionless radiative quantities G and F 

(2.14) 

4RT 
where K 9 and 

clNBo 

i s  the inverse Boltzmann number. The radiation transport equations 

(2.3) and (2.8) can then be written in the form 

(2.15a) 

(2.15b) 

3 = - (G - F), 
drl 

7 



(2.17) 

The rate equat ion ( 2 . 6 )  can be wr i t t en  as 

where 

(2.18) 

and T denote t h e  dens i ty  and temperature a t  some re-drence con 
RT, PO 0 

i t i on ,  

and Z E -$- (consequently Z = aZ. and Z* = @Zj). The dimensionless 

q u a n t i t y  ND 

r eac t ion ,  i.e., t h e  r a t i o  of the r e l a x a t i o n  length t o  the r ad ia t ion  

free path14. When % -, a, the  r a d i a t i o n  f i e l d  i s  i n  loca l  thermo- 

dynamic equilibrium. 

j J 
2cl 

is a Damkohler number corresponding t o  the  ion iza t ion  
a 

a 

Subs t i t u t ion  of 4. (2.16) i n t o  Eq. (2.18) leads  t o  

Elimination of q f r o m  Eqs. (2.14) and (2.171, y i e l d s  

(2.19) 

8 

(2.20) 



Dif fe ren t i a t ion  of Eq.(2.14) with respect  t o  q 

Eq. (2.16) leads t o  

with the  a i d  of 

o r , i n  view of (2.19), 

Eqs. (2.19), (2.20) and (2.22) provide th ree  coupled ordinary 

d i f f e r e n t i a l  equations f o r  the t h r e e  unknowns G, 2, and 8. 

boundary conditions f o r  the  shock l ayers  problem a r e  

The 

q-- , G = F, z = z*, e = e m +  z*, 

and 

q = \ r  G = n a q  

(2.21) 

(2.23) 

(2.24) 

Eq. (2.24) is t he  r ad ia t ive  boundary condition (d i f f e ren t i a l  approxi- 

m t i o n )  when the  w a l l  is maintained a t  zero temperature. The values of 

m are m = f i  f o r  the  Wrshak boundary condition and m = 2 f o r  the 

Mark boundary 

condi t ion (2.24) can b e  rewri t ten as 

With the  a i d  of Eq.(2.14), t he  boundary 

where BW, the value of 8 a t  the  w a l l ,  is  a given parameter of the  

problem. 
9 

(2.25) 



The ctrtlctiure of a normal shock w a s  can a l s o  be studied on t h e  

b a s i s  of t h e  noted equations together with t h e  boundary corlclitim (2.23) 

-a -*.a 

It is worth noting t h a t  Eqs.(2.19), (2.20) and (2.22) a r c  a 

set of autonomous ordinary d i f f e r e n t i a l  equations s incc the in-  

dependent va r i ab le  q does not appear e x p l i c i t l y  on the right-hand 

s ide .  We can, therefore ,  reduce the  number of equations t o  two 

by using any of t h e  va r i ab le s  G, Z and 8 as t h e  independent 

var iab le .  

Eq.(2.22) t o  ob ta in  

For t h i s  purpose, we d iv ide  Eqs. (2.19)’ and (2.20) by 

1 

3(em - e t z) 

(2.26) 

(2.27) 

(2.28) 

iz.  two coupled d i f f e r e n t i a l  equations, i n  t h e  dependent va r i ab le s  

G and Z, similar t o  t h e  equations obtained by Emanuel16 i n  t h e  study 

of t h e  s t r u c t u r e  of a normal shock wave with v i b r a t i o n a l  nonequilibrium. 

The boundary condi t ions  assoc ia ted  wi th  (2.27) and (2.28) are 

(2.29) 

10 



and 
r - 

(2.30) 

Thus t h e  problem of r ad ia t ing  shock l aye r s  with nonequilibrium 

r a d i a t i v e  and c o l l i s i o n a l  ion iza t ion  reduces t o  the so lu t ion  two 

coupled f i r s t - o r d e r ,  non-linear, ordinary d i f f e r e n t i a l  equations 

(2.27) and (2.28) with  two-point boundary conditions (2.29) and 

(2.30). 

A few comments a r e  i n  order with regard t o  t h e  numerical 

i n t e g r a t i o n  of equations (2.27) and (2.28). I n  the work reported 

he re  an  i t e r a t i v e  procedure has been inves t iga ted  whereby the degree 

of i on iza t ion  (i.e.,Z) a t  t h e  w a l l  is  chosen a r b i t r a r i l y  and t h e  

numerical i n t e g r a t i o n  of Eqs. (2.27) and (2.28) proceeds independently 

from t h e  end points.  It should be noted t h a t  the independent 

v a r i a b l e  8 and t h e  dependent var iab les  G and Z a r e  continuous functions.  

Thus, i f  t h e  subsc r ip t s  a and b t o  denote t h e  two branches of G and Z 

s t a r t i n g  r e spec t ive ly  from upstream i n f i n i t y  (Ga and Za) and from t h e  

w a l l  (% and Zb), t h e  unique so lu t ion  is i d e n t i f i e d  by t h e  i n t e r s e c t i o n  

of t h e  two branches of G and 2 a t  t h e  same Os. 

a t  t h e  w a l l  is  t h e  one t h a t  s a t i s f i e s  t h i s  condition. Once Z and G 

The proper value of Zb 

are obtained as a func t ion  of 8, t h e  ve loc i ty ,  temperature, and 

r a d i a t i v e  hea t  flux can be determined from Eqs.(2.10), (2.13) and 

(2.14), while  t h e  physical coordinate q can be found by t h e  quadrature 

11 



(2.31) 

~ ~ ~ ( 2 . 2 7 )  and (2.28) a r e  s ingu la r  a t  upstream i n f i n i t y .  To 

start t h e  numerical i n t eg ra t ion  from upstream, t h e  usual method of 

l i n e a r i z a t i o n  about the s ingular  po in t  must be employed. Accord- 

i ng ly ,  one s e t  G = G(0,) + G 1 , Z = Z* + Z 1 , 8 = el + 8 1. , 

s u b s t i t u t i o n  i n t o  Eqs. (2.19), (2.20) and (2.22) and l i n e a r i z a t i o n  

1 r e a d i l y  y i e l d  G1 = Z1* and 8 = 0 near upstream i n f i n i t y .  

dZ dG and - a r e  very large,  
de upstream of t h e  shock, t h e  slopes - 

d0 

Eqs. (2.27) and (2.28) are not s u i t a b l e  f o r  numerical integrat ion.  

Since 

I n  

t h i s  region, it is convenient t o  use G as t h e  independent var iab le .  

The equations t o  be  in t eg ra t ed  a r e  then 

and 

On t he  downstream s i d e  of t h e  shock, Eqs.(2.27) and (2.28) a r e  t o  

be in tegra ted .  

The parameters appearing i n  t h e  governing equations and i n  the  

(2.32) 

(2.33) 

, e,, and Bw. Numerical i n t eg ra t ion  
NBO 

boundary conditions a r e  ND , 

has  been attempted f o r  t he  model b lunt  body problem assuming Helium gas 

(R = 2.07 x 10 c m  sec 

a 

7 2 -zo -2 4 
K, Tj = 285,000°K, m = 6.692 x 10 gm) a 

12 



= 36.38 , 6- = 0.140137 , arid 8 = C.24; IL-- Llleae NBo W 
-% = 0.0361, 

a 
condi t ions  correspond t o  upstream temperature T = 300 K, pressure 1 

.--2 .̂._ g5 ~ 29 - 8 .  .v. - - ->  - -  p = LU ~ L I U ,  and 'Ach riuder n u w r  LCO: i r i t ~ g r ~ t f ~ i i  ~f 

EQs. (2.32) and (2.33) from upstream i n f i n i t y  and t h a t  of Eqs.Q.27) 

and (2.28) from the  w a l l  has been performed by means of an Adams- 

pred ic tor -cor rec tor  routine.  

can be obtained once f o r  a l l  (for a pa r t i cu la r  s e t  of parameters) 

without d i f f i c u l t y .  In tegra t ion  from the  w a l l ,  subject  t o  es t imited 

values  of 2 a t  the  wal l ,  becomes unstable  near t he  shock. 

shows the  unstable  behavior of the numerical in tegra t ion .  Far Zb(ew) = 

0.099115, G continuously increases  from the  w a l l  t o  t he  shock, 

whereas f o r  Zb(Bw) = 0.99200, G,, f i r s t  increases  and then decreases. 

I n  both cases ,  however, the  two branches of G do not appear t o  

intersect. 

The in t eg ra t ion  from upstream i n f i n i t y  

Fig. 1 

b 

Considerable e f f o r t  has been expended i n  determining t h e  source 

of t h e  d i f f i c u l t y .  A t  f i r s t  i t  w a s  a t t r i b u t e d  t o  the  " s t i f f "  behavior 

of the. equations. However, later considerat ions suggest t h a t  t he  

d i f f i c u l t y  is  i n t r i n s i c  t o  the  proposed formulation. 

i n  the  present  repor t  both blunt body and normal shock flows a r e  

governed by e s s e n t i a l l y  the  same equations. Thus, the  s ingular  

Spec i f ica l ly ,  

behavior of t h e  two problems i s  e s s e n t i a l l y  iden t i ca l ,  i . e . ,  the  

upstream " in f in i t i e s "  are s ingular  po in ts  and numerical i n t eg ra t ion  

must pass through these  points.  But the body loca t ion  i n  the  b lunt  

13 



hn,+r .-.-..J n r n h l m m  r-w---... does n o t  correspond t o  the dm.mctreirn singularity of 

the  normal shock. Moreover the properties a t  the  body surface, 

f,m.pittihle with 2 s9lr?tinn nf the governing eql?atinns, cannot 

be spec i f i ed  unless  an integral curve passing through both 

i n f i n i t i e s  i s  known. 

the problem is ill posed and m u s t  be reformulated t o  take t h i s  e f f e c t  

i n t o  account. 

Thus, by specifying body boundary conditions, 

14 



111. RADIATING FLU4 OF A Wow-GREY GAS IN THE 
SAGMTIOBl RXGION OVER A BLUNT BODY 

Althzugh re11Fstic n p t i r a l  properties of the gas (as opposed 

t o  a grey gas model ) have been recognized and considered i n  recent 

ana lyses  of r a d i a t i n g  flows over b lunt  bodies (e.g. Ref.lO), t h e i r  

in f luence  on t he  s t r u c t u r e  of the shock layer  has  not been explored 

i n  d e t a i l .  

in f luence  f o r  t h e  cases wherein t h e  absorption c o e f f i c i e n t  of t h e  

gas v a r i e s  importantly w i t h  frequency and the  assoc ia ted  o p t i c a l  

l engths  vary (as a f u n c t i m  of frequency) from mch l a r g e r  t o  much 

smal le r  than the  shock l a y e r  thickness,  Under these conditions one 

expects t o  observe regions of rapid temperature v a r i a t i o n  ad jacent  t o  

t h e  boundaries of t h e  flow, with assoc ia ted  changes i n  the convective 

hea t  t r a n s f e r  as  w e l l  as a strong frequency dependence of t h e  r a d i a t i v e  

hea t  t r ans fe r .  A marked frequency dependence of t h e  absorption 

c o e f f i c i e n t  is q u i t e  common i n  p rac t i ce ;  thus,  t h e  noted e f f e c t s  a r e  

of p r a c t i c a l  i n t e r e s t  and significance.  For i l l u s t r a t i v e  purposes we  

w i l l  s p e c i f i c a l l y  consider i n  w h a t  follows a model gas with a s t e p  

func t ion  dependence of t he  absorption coe f f i c i en t  upon frequency; such 

a model is r ep resen ta t ive ,  f o r  example, of t h e  o p t i c a l  p rope r t i e s  of 

a i r  i n  the  temperature range 10,000 t o  15,000'K. 

I n t u i t i v e  physical considerations suggest a n  appreciable 

The a n a l y s i s  is  based on a n  extension of t h e  moment equations 

( d i f f e r e n t i a l  appraximation) of r a d i a t i v e  t r a n s f e r  t o  t h e  case of non- 

grey gas with  s tep- func t ion  approximation i n  t h e  frequency dependence. 

We begin by d iv id ing  t h e  frequency spectrum i n t o  a number of d i s c r e t e  

15 



frequency ranges. 

assumed t o  behave according t o  c e r t a i n  average proper t ies  which 

In any given range (v < v < vM1), t he  gas is n 

give a good approximation t o  the a c t u a l  behavior. The moment 

equations f o r  each frequency group, v < v < vMl, a r e  i n  the  usual 

form 

n 
11-13 

- 
divq, = - a (I - 4mV) v o v  

and 

(3.1) 

grad I W = - aV$ (3 .2 )  

where 4, is the  r a d i a t i v e  heat  f lux ,  I the  average r ad ia t ive  i n t e n s i t y ,  w 
and S t h e  source function. I f  l o c a l  thermodynamic equilibrium is  

assumed, t he  source func t ion  i s  equal t o  the  Planck funct ion 

V 

With the  d i f f e r e n t i a l  approximation, t he  r ad ia t ive  boundary condition 

on t h e  w a l l  of t h e  blunt  body is  
12 , 13 

where 

r a d i a t i v e  heat  f l u x  from t h e  wall*. 

is t h e  outward normal of t h e  wall and q* is the  one-sided 

*The p o s i t i v e  s i g n  is  taken when the outward normal of t h e  w a l l  is i n  
the  same d i r e c t i o n  of t h e  pos i t i ve  coordinate  whereas t h e  negat ive 
s ign  is used i f  it is i n  the  opposite d i r e c t i o n  of t h e  pos i t i ve  coordinate. 

16 



For t h e  considered model gas ana lys i s  is conveniently ca r r i ed  

out  i n  terms of frequency integrated q u a n t i t i e s  Jn and Bn n' 

In tegra t ing  t h e  d i f f e r e n t i a l  equations (3.1) and (3.2) and the boundary 

condition (3.4) over t h e  frequency i n t e r v a l  v 

frequency range the  absorption coe f f i c i en t  remains constant) we have 

< v < vrrcl(in each n 

and 

- 
grad Jn = - a n q n  , 

with t h e  boundary condition 

(3.6b) 

The ove ra l l  frequency-integrated r a d i a t i v e  quan t i t i e s  are then 

given by 

17 



(3 .8j  

a3 a0 

Io =I IovdV= C Jn 
n=O 0 

In neutron-transport theory, a set of equation similar to that of 

Eqs. (3.6) and (3.7) are called the multi-group .diffusion equations 

The inverse problem of the axisymmetric flow field over the 

17 . 

blunt body associated with a paraboloidal shock wave has been treated 

by Cheng and Vincenti 7 for a grey gas. We now extend Cheng and 

Vincenti's work taking into consideration the effects of non-grey gas 

behavior. 

All variables in the following Eqs. (3.9)-(3.15) and in the boundary 

conditionsC(3.16) - (3.17)lare dimensionless: the velocity components 

are referred to the free-stream velocity fi-, the density to 

pressure to iw$ , the temperature to f 
to as. 
noted with bars and the corresponding dimensionless quantities without. 

the 

and all radiative quantities 
S' 

(In the remainder of the report, dimensional quantities are de- -4 

Quantities pertaining to the point immediately behind the shock on the 

stagnation streamline, and t o  the free stream conditions are denoted 

respectively by subscripts s and w). 
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The equations of continuity,  momentum, energy and s t a t e  i n  

the paraboloidal coordinates are 

= o ,  + ” ( U  -++) + -  ps 
Pv n 

5 + T )  
u’s 

u(v5 +-)+a= ’n 0 , 
s + 7 )  

p = $  pT 

y s  

3 where the parameter r is defined by r E - 4 
~,,’, 

(3.10) 

(3 .11)  

(3.12) 

(3.13) 
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rnf rrle r a d i e t i v e  tracspnrt eqs, (3 ,6)  and (3.7) w r i t t e n  i n  t h e  

paraboloidal coordinates a r e  

(3.14) 

a b  - pnp "T "sq (T2 + :) (J n - 4Bn) 

a b  2 2 5  
J = - 3BnP 'sr 45 + 7 4, nS 

where we have assumed t h a t  t he  absorption c o e f f i c i e n t  is of t h e  form 

n b 2 an an = C,(p,U, p) (TsT) and the parameter 8, is  defined by p n  = 

If we assume that t h e  cold gas ahead of tk shock is ne i the r  

absorbing nor emitt ing,  the boundary conditions immediately behind 

t h e  shock (q = 1) are 

(3.15) 

(3.16) 

(3.17a) 

(3.17b) 
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where the  s t rong  shock approximation has been used i n  Eqs.(3.17a) - 
(3.17e). The boundary conditions a t  t h e  w a l l  are 

(3.17~) 

(3.17d) 

(3.17e) 

(3.17f) 

and 

(3.18b) 

where \ is t h e  loca t ion  of the w a l l  t o  be determined. 

w e  w i l l  now perform the following operations: (1) introduce the  

stream funct ion  Y ,  (2) interchange t h e  r o l e s  of q and \y by means of 

As i n  Ref. 7 ,  

t h e  Von Mises t r a n s f o m t i o n ,  (3) introduce t h e  normalized va r i ab le s  

(3.19) 
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1 Q: (Z,w) T 
qn (1 + C2) 

where Z 5 2 /(1 + 5 2 ) i s  a new independent var iab le  

A f t e r  a l l  these  operations,  the governing equations 

normalized va r i ab le s  a re :  

i n  place of 5 .  

i n  terms of the  

1 

(3 .20)  I 

+ - 2%.l [ Z ( l  - Z) Pz - ZP - WP,] - 8 2%J [Z(1  - z)ez 
P 

={ [(l - ZIPz - P$w - (1 - Z)TZPW} = 0 

22 



+ p 4% [% - Z ( 1  - Z)?lZ] [Z(1  - 2) Pz - ZP - 3PJ 

16q 2 [Z + q2(1 - Z ) y P  P M 
w w s s  1 o  + 

(3.22) 
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an+h -1 
( 3 . 2 4 )  

n an b 
- (1 - Z)qzMnw + @ (%) 8 n ( l  - Z) 

2 n Y +  

(n = 1 , 2  ,. . .a) 

(3 .25 )  

( n = 1 , 2 ,  ...a) 

We now apply t h e  method of s e r i e s  truncation. 

va r i ab le  is  f i r s t  expanded i n  a power series i n  Z of the  form 

Each dependent 

P(2,w) = F1(UJ) + ZF2(U.J) + ... ( 3 . 2 6 )  

where subsc r ip t s  1 and 2 i den t i fy  q u a n t i t i e s  assoc ia ted  with the  f i r s t -  

and second-order problems, respect ively.  Subs t i tu t ing  Eq.(3.26) i n t o  

Eqs.(3.20) - (3.25), co l l ec t ing  t h e  coe f f i c i en t  of Z ,  and s e t t i n g  t o  

zero q u a n t i t i e s  with subscr ipt  2 ,  we o b t a i q  f o r  t he  f i r s t - o r d e r  
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problem(with the subscript 1 omitted) 

and 

2 -1 3 ' (y-1)P 6 r) H 

(n = lJ, ...=) 

2uw dP 9 g] + -  - -  P dw 

The boundary conditions at the  shock are 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 



( 3 . 3 4 )  

(3.35) 

and on the  w a l l  

Mn(0) = -2Q'(O) n (3.36) 

Eqs. (3.27)-(3.32) a r e  t o  be integrated numerically from the 

shock (w = 1) t o  the  wa l l  (w = 0). A sample ca l cu la t ion  with 

C1 = 2.7 x 10 -7 , a l  = 1, bl = -1 f o r  v < 2.5 x 1015 sec -1 , 

15 -1 C p  = 0.108, a2 = 1, b2 = -1 f o r  v > 2.5 x 10 sec and with 

= 12 ,OOO°K, p, = 1 atm, and y = 5 f t . ,  corresponding t o  the  
rS 

-3 3 parameters 

attempted. 

= 5 x 10 , f3, = 1.8 x 10 , and r = 1.90 w a s  1 

Two methods were used t o  in t eg ra t e  the  two-point boundary value 

The f i r s t  method was the  usual  one: t o  convert  problem numerically. 

it i n t o  an  i n i t i a l - v a l u e  problem by prescr ib ing  two of t he  unknowns 

r a d i a t i v e  q u a n t i t i e s  a t  t h e  shock (for example Q (1) corresponding t o  

t h e  small absorpt ion coe f f i c i en t  a! and Q (1) corresponding t o  the 

l a rge  absorp t ion  coe f f i c i en t  ai); t h e  i n i t i a l - v a l u e  problem is then 

solved numerically by means of an Adams predic tor -cor rec tor  rout ine  

1 

1' 2 

on an e l e c t r o n i c  computer. Although t h i s  procedure was used i n  Ref. 7 

with  no d i f f i c u l t y ,  t h e  numerical i n t e g r a t i o n  becomes unstable  i n  the  

present  work. It is  found t h a t  the  so lu t ion  i s  p r a c t i c a l l y  independent 
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of the  boundary value of Q,(1) ( a t  t he  shock) but is extremely 

s e n s i t i v e  t o  t h e  boundary value of Q2(1). Small changes i n  Q (1) 2 
lead  t o  d r a s t i c  changes i n  t h e  so lu t ion  (see Fig. 2 ) .  The second 

approach t o  the  two-point boundary value problem was t o  in t eg ra t e  

numerically on the  b a s i s  of quas i l i nea r i za t ion  . It was found 

t h a t  t h e  i t e r a t i o n  did not converge and t h a t  small changes i n  

i n i t i a l  d i s t r i b u t i o n  led t o  d r a s t i c  changes i n  the  so lu t ion .  

& 

18 

Unstable behavior of a similar na ture  has  been reported i n  
19-21 

t h e  l i t e r a t u r e  . Speci f ica l ly ,  Ca r r i e r  and Averett” considered 

a non-grey r a d i a t i v e  t r anspor t  problem where the  absorpt ion coe f f i c i en t s  

had d i spa ra t e  frequency independent values on e i t h e r  s i d e  of some 

frequency bound separa t ing  these regimes. They found t h a t  t h e  

r e s u l t i n g  t r anspor t  equation was of t h e  boundary layer  type assoc ia ted  

wi th  s ingular  per turba t ion  problems. 

t r anspor t  equations,  t h e  present problem is e n t i r e l y  analogous t o  t h a t  

of Ref. 21. Thus, i t  may be concluded t h a t  t he  numerical i n s t a b i l i t i e s  

could be removed, as i n  boundary l aye r  theory,  by proper nratching of 

“inner” and t toutertt  so lu t ions  using techniques of asymptotic expansion 

t h e  or y . 

With respect  t o  the  r a d i a t i v e  
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Iv. CONCLUDING REMARKS 

Two face t s  of the problem of r ad ia t ing  flow over blunt  bodies 

have been formulated: (1) the  nonequilibrium ioniza t ion  f i e l d  

and (2) non-grey e f f e c t s .  I n  both cases, a s l i g h t l y  modified 

d i f f e r e n t i a l  approximation i s  employed t o  take proper account of 

t h e  reabsorpt ion o f  r ad ia t ion ,  which is of c r u c i a l  importance near 

t h e  s tagnat ion  point .  

The d i f f e r e n t i a l  approximation leads t o  two-point boundary 

condi t ions.  For numerical i n t eg ra t ion ,  the two-point boundary 

value problem i s  converted t o  an i n i t i a l  value problem. 

d i f f i c u l t y  arises as t o  how t o  make the  successive i t e r a t i o n  of 

t h e  unknown boundary values converge. The in t eg ra t ion  is f u r t h e r  

complicated by the  f a c t  t h a t  the equations exh ib i t  numerical 

i n s t a b i l i t i e s .  The d i f f i c u l t i e s  assoc ia ted  with the two problems 

have been discussed i n  Sections I1 and 111. It appears t h a t  

i n  both cases, in t eg ra t ion  schemes appropriate  t o  the  mathematical 

na ture  of t h e  respec t ive  governing equations would succeed i n  

providing numerical so lu t ions .  

i s  indica ted .  

The 

Further  work along these l i n e s  

The author  would l i k e  t o  thank Professor R. Vag l io -bur in  and 

D r .  p, I. Hoffert  f o r  many discussions.  
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8 

Figure 1 Standing normal shock i n  front of a wall  r - i t h  chemical 
and radiative nonequilibrium: Example of divergent 
i t e r a t i v e  solutions of Eqs. (2.32) and (2 .33)  showing 
G(0) and Z(6) start ing from :.all i n i t i a l  conditions 
Z (6 ) = 0.099115 and Z,(BW) = 0.09920. 

the asynptotic upstream values. 

G and Z are 
b w  a a 
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Figure 2 Blunt body stagnation l i n e  for a non-grel- gas: 
of divergent i t era t ive  so lut ions  of Eqs. (3.27) - (3.32) 
showing T(w) for  the shock (w = 1) i n i t i a l  conditions 
Q ( l )  = 0.017 and Q(1) = 0.016. 

Exsmple 
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